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The chaotic synchronization in n-dimensional large map networks with local coupling and their size stabili-
ties in the node number N→� are studied analytically and numerically. The analytical results show that the
chaotic synchronization is stable for N→� in the presence of the external driving or global coupling. The
numerical calculations show that, as the driving or global interaction strength increases from zero, the network
states have the whole route: spatiotemporal chaotic state → cluster chaotic synchronous state → complete
chaotic synchronous state → spatiotemporal pattern → spatiotemporal chaotic state.
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Chaotic synchronization and pattern formation in complex
networks have been the interesting research subjects in many
branches of science �1–8� due to its widespread existence
and applications. The main factors affecting the chaotic syn-
chronization are the node dynamics, the coupling schemes,
the coupling functions and the size of the networks. Al-
though numerous studies have revealed some relations be-
tween the network structure and the network dynamics, the
general relation are still far from being well understood. On
the other hand, the size stabilities of the networks, especially
the n-dimensional large map networks �nDW, n�2� and the
nonregular networks have not been clearly concerned. Only
for the symmetrical local coupled regular networks were the
size stabilities discussed �4,5,9�. One natural question is that
under what conditions can the chaotic synchronization be

stable in the limit N→�? In general network coupling, the
chaotic synchronization might be unstable in the limit
N→�. In this paper, we study the driven nDW with global
and local couplings and show analytically that the chaotic
synchronization is stable in the limit N→� for certain con-
ditions. Numerical simulations show that with increasing the
driving strength the system first enters into the cluster cha-
otic synchronization from the spatiotemporal chaos, then into
the complete chaotic synchronization, and then into spa-
tiotemporal pattern with a spatial wavelength of two adjacent
oscillators, beyond which the system transits to spatiotempo-
ral chaos.

The model we consider is the driven nDW with global
and nearest-neighbor couplings, its dynamics is described by

xm+1�j1, j2, . . . , jn� = f„xm�j1, j2, . . . , jn�… + �
i=1

n

aji−1�f„xm�j1, . . . , ji − 1, . . . , jn�… − f„xm�j1, . . . , ji, . . . , jn�…�

+ �
i=1

n

aji+1�f„xm�j1, . . . , ji + 1, . . . , jn�… − f„xm�j1, . . . , ji, . . . , jn�…�

+
1

N
�
�li�

N

d�l1,l2, . . . ,ln��f„xm�l1,l2, . . . ,ln�… − f„xm�j1, j2, . . . , jn�…�

+ a0�j1, j2, . . . , jn��F�xm
0 � − f„xm�j1, j2, . . . , jn�…� , �1�

here f(xm�j1 , j2 , . . . , jn�)=uxm�j1 , j2 , . . . , jn�(1
−xm�j1 , j2 , . . . , jn�) is the logistic map representing
the node �j1 , j2 , . . . , jn� chaotic dynamics, ji=1,2 , . . . ,Ni is
the node index in ji direction, aji±1�aj1,. . .,ji±1,. . .,jn

, and
N=N1�N2� ¯ �Nn is the nDW size. The second and the
third terms in Eq. �1� describe the nearest-neighbor coupling
in all directions j1 , j2 , . . . , jn, while the fourth and the last

terms describe the global and driving interactions, respec-
tively. The external drive is chosen in our present study as
F�xm

0 �= f�xm
0 �=u0xm

0 �1−xm
0 �, and the periodic boundary con-

ditions are used in the following calculations.
The synchronous state xm=xm�j1 , j2 , . . . , jn� ,

∀ j1 , j2 , . . . , jn, is described by

xm+1 = �1 − a0�f�xm� + a0f�xm
0 � . �2�

In obtaining Eq. �2�, we have set a0�j1 , j2 , . . . , jn�
=a0 , ∀ j1 , j2 , . . . , jn, d�l1 , l2 , . . . , ln�=d , ∀ l1 , l2 , . . . , ln.*Corresponding author. Electronic address: hongbinh@seu.edu.cn
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In order to study the stability of the synchronous state, we
linearize Eq. �1� by defining �xm�j1 , j2 , . . . , jn�
=xm�j1 , j2 , . . . , jn�−xm, let aji±1�ai

± and then diagonalize the
linearized equation by discrete Fourier transformation

�xm�j1, j2, . . . , jn� = 	

i=1

n

Ni�−1/2

�
�ki�

�m�k1,k2, . . . ,kn�

�

i=1

n

exp�− �− 12�jiki/Ni� . �3�

The transformed variational equation is given by

�m+1�k1,k2, . . . ,kn� = ��k1,k2, . . . ,kn�f��xm��m�k1,k2, . . . ,kn� ,

�4�

where ��k1 ,k2 , . . . ,kn�=1−a0−d−�i=1
n �ai

−+ai
+�

+�i=1
n �ai

−e�−12�ki/Ni +ai
+e−�−12�ki/Ni� is an eigenvalue of the

coupling matrix of the nDW, and ki=0,1 ,2 , . . . ,Ni−1. Let
ai

�=bi±ci�ci	bi�, where bi and ci are diffusive and gradient
coupling parameters, respectively. We have the following
Lyapunov exponent �LE�:


�k1,k2, . . . ,kn�

= 
0 + ln
��k1,k2, . . . ,kn�


= 
0 + ln�1 − a0 − d − 2�
i=1

n �bi�1 − cos	2�ki

Ni
��

− �− 1ci sin	2�ki

Ni
��� , �5�

where 
0 is the LE calculated from Eq. �2� and its lineariza-
tion around the synchronous state xm, 
0

=limm→�
1
m�l=0

m−1ln 
u�1−2xl�
. From Eq. �5� we see that the
global interaction has the same effect on the stability of the
network dynamics with that of the external driving. The
complete chaotic synchronization occurs if 
�k1 ,k2 , . . . ,kn�
�0, ∀k1 ,k2 , . . . ,kn, that is

�1 − a0 − d − 2�
i=1

n

bi�1 − cos	2�ki

Ni
���2

+ 4	�
i=1

n

ci sin
2�ki

Ni
�2

� e−2
0, �6�

let x=1−a0−d−2�i=1
n bi�1−cos� 2�ki

Ni
��, and y

=2�i=1
n ci sin� 2�ki

Ni
�, then Eq. �6� can be written as

x2+y2�R2=e−2
0. The stability of the synchronous state re-
quires that all the eigenvalues
��k1 ,k2 , . . . ,kn� , ∀k1 ,k2 , . . . ,kn, lying on the ellipses
�x−�1−a0−d−2�i=1

n bi��2

4bi
2 + y2

4ci
2 =1, �i=1,2 , . . . ,n�, to be contained

within the circle x2+y2=R2. For the 1DW with symmetry
nearest-neighbor coupling, the stability condition was nu-
merically studied �5�, but here we give the tight bounds ana-
lytically for the chaotic synchronization in the driven nDW
with global and local couplings.

If 1−a0−d−2�i=1
n bi�0, from Eq. �6� and the fact

ci	bi we see that the most unstable modes are ki=1, and
Ni−1�i=1,2 , . . . ,n�, in this case the maximum size
Nic�i=1,2 , . . . ,n� that support the chaotic synchronization
are determined by

�1 − a0 − d − 2�
i=1

n

bi�1 − cos	2�

Nic
���2

+ 4��
i=1

n

ci sin	2�

Nic
��2


 e−2
0, �7�

which give the Nic for different a0, d, bi, and ci. In the limit
Nic→� �i=1,2 , . . . ,n�, the stability condition becomes

1 − a0 − d � e−
0. �8�

It is obvious that the nDW cannot be in chaotic synchronous
state in the limit Ni→� for 
0�0, and a0=d=0.

In the case 1−a0−d−2�i=1
n bi�0, the most unstable

modes are ki=
Ni

2 �i=1,2 , . . . ,n�. Now Eq. �6� becomes

4�
i=1

n

bi − �1 − a0 − d� � e−
0, �9�

which is also the stability condition for chaotic synchroniza-
tion in the limit Ni→ � �i=1,2 , . . . ,n�. In order to determine
the critical size Nic analytically for different a0, d, bi, and ci,
we choose ki�

Nic

2 ±1 as the most unstable nodes, which is a
good approximation for larger Nic. This leads to the size
equation

�1 − a0 − d − 2�
i=1

n

bi�1 + cos	2�

Nic
���2

+ 4��
i=1

n

cisin	2�

Nic
��2


 e−2
0. �10�

As an example, we give the critical size Nc for the driven
1DW with global and local coupling. From Eq. �7� we have

sin2 �

Nc
= „��1 − a0 − d�b1 − 2c1

2� − ���1 − a0 − d�b1 − 2c1
2�2

− �b1
2 − c1

2���1 − a0 − d�2 − e−2
0��1/2
…

��4�b1
2 − c1

2��−1 �b1 � c1� ,

sin2 �

Nc
= ��1 − a0 − d�2 − e−2
0�

��8b1�1 − a0 − d − 2b1��−1 �b1 = c1� , �11�

while Eq. �10� leads to

cos2 �

Nc
= „��1 − a0 − d�b1 − 2c1

2� + ���1 − a0 − d�b1 − 2c1
2�2

− �b1
2 − c1

2���1 − a0 − d�2 − e−2
0��1/2
…

��4�b1
2 − c1

2��−1 �b1 � c1� ,
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cos2 �

Nc
= �e−2
0 − �1 − a0 − d�2�

��8b1�2b1 − �1 − a0 − d���−1 �b1 = c1� . �12�

In order to study the driving effect on the chaotic synchroni-
zation, we, based on Eqs. �1�, �7�, and �10�, first simulate the
dynamics of a driven 1DW with symmetrical coupling �c1

=0� and without global coupling �d=0� for u0=u=4 and
different a0, and b1. Figure 1 shows the numerical results. If
the driving constant a0 is small, the system is in the spa-
tiotemporal chaotic state. With increasing a0, the system
enters into cluster chaotic synchronization, inset �a� in
Fig. 1 showing the xm�j1� vs j1. In this case, some map
nodes are in complete chaotic synchronous state, and others
in spatial pulse state. This pulse height and pulse number
decrease as a0 increases, finally the system enters into the
complete chaotic synchronous state xm�j1�=constant, ∀j1.

Further increasing a0, the synchronous state xm�j1�
=constant loses the stability to a state of the form xm�j1�
=constant+ �−1� j1 · amplitude, for 0.1�b1�0.25 �see inset
�b��. This spatial pattern has a spatial wavelength of two
nodes �10�, and the amplitude of xm�j1� increases with in-
creasing a0, and finally the system enters into the spatiotem-
poral chaotic state. However, in the regions b1�0.25 and
b1�0.1, this spatiotemporal pattern disappears, and the
system transits to the spatiotemporal chaotic state from
synchronous state abruptly. Figure 2 shows the relation
x1000�j1�−a0 for u0=u=4, N=10 000, b1=0.225, and
c1=d=0, which reflects the whole route discussed above.
The similar case occurs for the driven nDW with asymmetri-
cal local coupling �c1�0�. Figures 3 and 4 show the typical
cluster synchronization and spatiotemporal pattern for the
2DW with u0=u=4, d=0, b1=0.11, b2=0.12, c1=−0.1, and
c2=0.1, respectively.

In the above discussions, we have let a0�j1 , j2 , . . . , jn�

FIG. 1. Different state regions in �a0 ,b1� space for the 1DW
with u0=u=4, c1=0, and d=0. White and gray regions show the
unsynchronous and synchronous states, respectively. Inset �a�
shows the cluster synchronization, while inset �b� shows the spa-
tiotemporal pattern. The constants A and B shown in the insets are
determined by a0, b1, and initial conditions.

FIG. 2. Amplitude x1000�j1� vs a0 for u0=u=4, N=10 000,
b1=0.225, c1=0, and d=0, 0�a0�0.32, spatiotemporal chaos;
0.32�a0�0.34, cluster synchronization; 0.34�a0�0.6, chaotic
synchronization; 0.6�a0�0.608, spatiotemporal pattern;
0.608�a0, spatiotemporal chaos.

FIG. 3. �a� Plot of x5000�j1 , j2�−0.534 vs j1 and j2 for the 2DW,
which shows the cluster synchronization. The network size
N1�N2 is 100�100, and the parameters are u0=u=4, d=0,
b1=0.11, b2=0.12, c1=−0.1, c2=0.1, and a0=0.324 33. �b� Plot of
x5000�42, j2�−0.534 vs j2, the parameters are the same as �a�.
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=a0 , ∀ j1 , j2 , . . . , jn and d�l1 , l2 , . . . , ln�=d , ∀ l1 , l2 , . . . , ln,
that is all nodes have the same driving and global couplings.
An interesting phenomenon that should be noted is that

the synchronous state xm+1= �1−a0�j1 , j2 , . . . , jn��f�xm�
+a0�j1 , j2 , . . . , jn�f�xm

0 � is not sensitive to the coupling sym-
metry, the chaotic synchronization also occurs if the coupling
constants aji±1, d�l1 , l2 , . . . , ln� and �or� a0�j1 , j2 , . . . , jn� are
different for different j, i, and l. For example, for the 1DW
with d�l1�=0,N=10 000, the chaotic synchronization also
occurs if all aj1±1�j1=1 ,2 , . . . ,N� are random numbers cho-
sen from the region �0,0.1� of uniform distribution and all
a0�j1��j1=1 ,2 , . . . ,N� are random numbers chosen from the
region �0.55,1� of uniform distribution. But in this case only
spatiotemporal and synchronous chaotic states exist, the
cluster synchronization and spatiotemporal pattern disappear.

It should be stressed that the global coupling has the simi-
lar effect on the dynamics of the nDW to that of the external
driving.

In summary, we have given the analytical conditions for
chaotic synchronization in both finite size and the infinite
size �N→ � � of the driven nDW. Numerical calculation
shows that the transitions between the chaotic synchroniza-
tion and the spatiotemporal chaos is via cluster chaotic syn-
chronization, or the spatiotemporal pattern with the neigh-
boring nodes having opposite phase ���, or the crisis.
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FIG. 4. Plot of x5000�j1 , j2� vs j1 and j2 for the 2DW, which
shows the spatiotemporal pattern. The network size is 100�100,
and the parameters are u0=u=4, d=0, b1=0.11, b2=0.12, c1=
−0.1, c2=0.1, and a0=0.581. It clearly shows that the neighboring
nodes have the opposite phase.
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